Pseudohypoparathyroidism: Case Presentation and Literature Review

Aristides Maniatis, MD
Rocky Mountain Pediatric Endocrinology
PENS: 5/15/06

Disclosures

• Nothing to disclose
• Parental permission granted for use of photo

Objectives

• 1) Identify signs and symptoms of pseudo-hypoparathyroidism
• 2) Identify methods of properly diagnosing pseudohypoparathyroidism
• 3) Explain the underlying genetics of pseudo-hypoparathyroidism
Case Study

Birth History:
- Female infant born full-term, appropriate for gestational age, product of NSVD
- **1st NBMS** → Total T4: 4.2ug/dL (>6) and TSH <20mU/L
- **2nd NBMS** → Total T4: 5.1, TSH: 27
- Confirmatory serum testing at dol 11 revealed an elevated TSH: 35uIU/mL
- Started on levothyroxine: 25mcg qd

Early Hospitalizations
- 1mo: Fever of unknown source
 - TSH still elevated and increase levothyroxine to 37.5mcg
- 4mo: Failure to thrive
 - Started on elemental formula; maximize calories
- 5mo: Persistent failure to thrive and poor feeding
6mo: prolonged hospitalization

- Presented with multiple episodes of acute life threatening events (ALTE) and apnea
- Bronchoscopy → laryngospasm
- Swallow study → aspiration and hiatal hernia
- Pre-op eval for fundoplication, G-tube, and hiatal hernia repair included low serum Ca: 7.3mg/dL (LLN: 8.9)
- Consulted for further evaluation/management

Let’s meet the patient

- Physical exam:
 - Round face
 - Slightly short nose
 - No shortening of 4th/5th metacarpals
 - No SQ calcifications
- Overall: not overly dramatic phenotype at that age (6mo)

But, by age 2yo: clear phenotype develops
Now back to the 6mo eval…
- Ionized Ca: 0.89mmol/L (LLN: 1.15)
- Phos: 6.1mg/dL (ULN: 5.7)
- Intact PTH: 953pg/ml (10-65)
- 25-OH vit D: 25ng/ml (10-55)
- 1,25-OH vit D: 74pg/ml (15-90)
- U Ca/Cr: <0.20

Diagnoses
- Pseudohypoparathyroidism
 - Low Ca, high Phos, with super-high PTH
- Laryngospasm/ALTE
 - Secondary to hypocalcemia
- Hiatal hernia with aspiration

Objective 1:
Signs and symptoms of pseudohypoparathyroidism
Hypocalcemia

- Irritability, jitteriness, seizures
- Laryngospasm, apnea, cyanosis
- Poor feeding/failure to thrive
- Muscle spasms, tetany
- EKG: long QT interval
Calcium Homeostasis-2

• Hypoparathyroidism:
 – Low PTH → low Ca and high Phos

• Hyperparathyroidism:
 – High PTH → high Ca and low Phos

• Pseudo-hypoparathyroidism:
 – Looks like hypoparathyroidism: low Ca and high Phos
 – But, elevated PTH (due to resistance)

Albright’s Hereditary Osteodystrophy (AHO) Phenotype

• Short stature
 – Decreased growth velocity
 – Early epiphyseal closure

• Developmental delays

• Round facies

• Obesity

• Short 3rd-5th metacarpals

• Subcutaneous calcifications

History of Pseudohypoparathyroidism

• The 1st hormone resistance syndrome identified (Albright, 1942)
 – 28yo woman with hypoCa seizures, MR, short/stocky, round face, short metacarpals/metatarsals, and SQ calcification
 – Rx: IM bovine PTH → no improvement in serum calcium
 – Surgical exploration of parathyroid glands → nl
Objective 2:

Diagnosing pseudohypoparathyroidism

Pathophysiology

• Loss of function in GNAS gene
 – G alpha subunit of the G-protein seven transmembrane receptor family

G-protein Cycle

• Inactive: alpha-GDP
• With receptor activation: GDP \rightarrow GTP
 – Active alpha subunit dissociates
 – Stimulates adenylate cyclase \rightarrow cAMP
 – Downstream activation
G Protein Receptor Defect: Leads to Resistance

- PTH
- TSH
- LH/FSH
- GHRH

Back to the patient....

- GNAS gene analysis
 - Heterozygous mutation Arg 231 Cys in exon 9
- Molecular diagnosis confirms pseudohypoparathyroidism

Objective 3:

Genetics of pseudohypoparathyroidism
Tissue-specific imprinting:
GNAS allele

- GNAS is expressed in all tissues, with both maternal and paternal alleles
- Renal cells only express maternal allele

Parent of Origin

- Maternal allele mutation:
 - Somatic cells (50% reduction) → AHO phenotype
 - Renal tubules → PTH resistance
 - Low Ca, high Phos, and high PTH
 - Dx: pseudohypoparathyroidism
- Paternal allele mutation:
 - Somatic cells (50% reduction) → AHO phenotype
 - Renal tubules: unaffected, no PTH resistance
 - Normal labs
 - Dx: pseudo-pseudohypoparathyroidism

Pseudohypoparathyroidism Classification

- **Type 1A**
 - PTH resistance, AHO, and resistance to other hormones (such as TSH)
 - GNAS deactivating mutation in maternal allele
- **Type 1B**
 - PTH resistance, but no AHO or other hormone resistance
 - Loss of maternal exon 1A (methylation defect)
 - Normally: maternal allele methylated and paternal allele is unmethylated
 - T1B: 2 functional “paternal” alleles → no AHO
Pseudohypoparathyroidism
Classification (cont’d)

- Type 1C
 - Just like T1A, but normal GNA gene
 - Unknown genetic defect
- Type 2
 - Just like T1B, but lesion is distal to cAMP mechanism

Treatment

- Calcitriol (1,25 OH vit D)
 - Dosing: 0.06mcg/kg/d (usually 0.5mcg 1-2x/d)
- Elemental calcium
 - 50mg/kg/d
 - Common prep: Ca carbonate (40% is elemental)
- Other associated resistant states
 - Levothyroxine is most common
Patient follow-up labs on treatment

- Serum Ca: 10.6mg/dL (8.5-10.6)
- Serum Phos: 6.3mg/dL (2.5-7.1)
- U Ca/Cr: <0.20
- Required increasing levothyroxine dosing, but ultimately euthyroid state achieved
 - Free T4: 1.62ng/dL (0.88-1.84)
 - TSH: 3.8uIU/ml (0.50-4.50)

Growth/development

- Gross motor delays → started PT
- Weight improved
 - <<3rd%ile → 50th%ile (and tracking without excessive weight gain)
- Length tracking at 5th%ile
 - Most recent interval growth velocity: 14cm/yr

Summary:
Pseudohypoparathyroidism

- Presents with classic labs:
 - low Ca, high Phos, and high PTH
 - may also have other resistant states
 - most commonly, high TSH
- AHO phenotype is difficult in infants, but clearer as child develops
 - Short stature, developmental delays, round facies
 - Obesity
 - Short 3rd-5th metacarpals, SQ calcifications
Summary (cont):
Pseudohypoparathyroidism

- Genetics due to inactivating mutation in GNAS maternal allele
- If inactivating mutation in paternal allele, then AHO phenotype, but normal labs: pseudo-pseudohypoparathyroidism
- Treatment:
 - Calcitriol
 - Elemental calcium

Questions?

References