The Path From Hormone Abnormality to Hypoglycemia

Linda J. Steinkrauss, MSN, CPNP
Pediatric Endocrinology

Conflicts of Interest

• None

Objectives

• Discuss the human body systems required for normal fasting adaptation.
• Describe how hormone abnormalities can lead to hypoglycemia.
• Discuss case studies of infants and children with hypoglycemia and determine which hormone excess or deficiency could be implicated as a cause of hypoglycemia.
Body and Brain need a constant source of fuel

Glucose

Glucose and the Adult Brain
- Glucose = main fuel for the body and brain
- At rest, 60% of glucose is used by the brain
- Glucose Utilization Rate = ~2mg/kg/min
- Glucose from food = 3 hours
- Then, fasting adaptation is required
- Fasting time to hypoglycemia = ~48 hours
Glucose and the Infant Brain

- Infant brain
 - Brain:body mass
 - Glucose utilization
 - Fuel stores
- Comparison with Adults (10kg infant)
 - Fuel stores = 15% of adult
 - Caloric needs = 60% of adult
 - Glucose utilization = 2-3X faster
 - Glucose Utilization Rate = 4-6mg/kg/min
- Fasting time to hypoglycemia = 24+ hours

Older/Bigger = Fast Longer

Fasting Metabolites by Age – 20 hour fast

<table>
<thead>
<tr>
<th>Age in Years</th>
<th>0-1</th>
<th>2-6</th>
<th>7-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg/dL)</td>
<td>59</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Beta-hydroxybutyrate (mmol/L)</td>
<td>2.23</td>
<td>1.19</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Guideline for Fasting Time to Hypoglycemia

<table>
<thead>
<tr>
<th>Age</th>
<th>Hours Fasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonate</td>
<td>12</td>
</tr>
<tr>
<td>Infant</td>
<td>24</td>
</tr>
<tr>
<td>Child</td>
<td>36</td>
</tr>
<tr>
<td>Adult</td>
<td>48</td>
</tr>
</tbody>
</table>
Normal Fasting Adaptation

Fasting Fuel Production
- Gluconeogenesis
- Glycogenolysis
- Lipolysis/Fatty Acid Oxidation/Ketogenesis

Fasting Systems in Normal Child
Gluconeogenesis

- The creation of glucose in the body from non-carbohydrate substrates
- Not a significant source of glucose production

Fasting Systems in Normal Child

Slide borrowed with permission from Charles A. Stanley, MD.
Gluconeogenesis

Muscle ➔ Lactate ➔ Glucose

Fat ➔ Glycerol ➔ Glucose

Protein ➔ Amino acids ➔ Glucose

Substrates

Glycogenolysis

• Breakdown of glycogen to glucose in the liver
• Main source of fuel in the early hours of fasting

Glycogen ➔ Glucose-6-phosphate ➔ Glucose

Lipolysis, Fatty Acid Oxidation, and Ketogenesis

• Fat breakdown and ketone production
• Ketones = alternate fuel
• Main source of fuel later in fasting
• Ketogenic diet
• Atkins diet
Summary

- Three main mechanisms the body has for producing fuel in the fasting state:
 - Gluconeogenesis
 - Glycogenolysis
 - Lipolysis/Fatty Acid Oxidation/Ketogenesis

Hormones and Hypoglycemia

What hormones (in excess or deficient amounts) cause hypoglycemia?

- Insulin
- Glucagon
- Epinephrine
- Cortisol
- Growth Hormone
Hormonal Control of Fasting Systems

<table>
<thead>
<tr>
<th></th>
<th>Glycogenolysis</th>
<th>Gluconeogenesis</th>
<th>Lipolysis</th>
<th>Fatty Acid Oxidation/Ketogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glucagon</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epinephrine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cortisol</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Growth Hormone</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Insulin
- Insulin ↑ BG levels by transporting glucose molecules into the cells and out of the blood stream
- Insulin inhibits all parts of fasting adaptation
- Eat food = ↑ Glucose = ↑ Insulin = inhibition of fasting systems

Hyperinsulinized State
- Excess exogenous insulin – diabetes
- Excess endogenous insulin – congenital hyperinsulinism (HI)
- Fasting systems are inhibited by insulin when they are really needed

- Treatment
 - Diabetes – administer carbohydrate, glucagon
 - Congenital HI – medication, surgery, continuous dextrose, glucagon
Glucagon
- Hormone released by alpha cells in the pancreas
- Stimulates glycogenolysis and gluconeogenesis
- Glucose = Glucagon

Glucagon Deficiency
- Leads to hypoglycemia
- Isolated glucagon deficiency is very rare
- Other causes:
 - Pancreatectomy
 - T1DM
 - Advanced T2DM
- Treatment?

Epinephrine
- Hormone secreted from adrenal medulla
- Released during stress
- Epinephrine actions:
 - HR
 - Vasodilation of vessels to muscle and liver
 - Vasoconstriction of most other blood vessels
 - Stimulates all fasting systems

Epinephrine
During stress or fasting:
Epinephrine = Stimulation of Fasting Systems
Result = \(\uparrow \) Fuel

Epinephrine Deficiency
- Leads to hypoglycemia
- Deficiency is rare
- More common = Epinephrine is blocked
- What medications block Epinephrine?
 - Beta-blockers
 - atenolol
 - propranolol
 - nadolol
 - metoprolol
 - labetalol
 - timolol

Epinephrine Blocked
- Child on beta blocker
- Develops fasting ketotic hypoglycemia
- Treatment = decrease fasting time
Cortisol

- Produced by adrenal cortex
- Maintains homeostasis
 - Immune response
 - Anti-inflammatory action
 - BP
 - HR
 - CNS activation
- Another stress hormone
- Stimulates gluconeogenesis

Cortisol

During stress or fasting:

\[\uparrow\text{Cortisol} = \text{Stimulation of Gluconeogenesis} \]

Result = \(\uparrow\text{Fuel} \)
Cortisol Deficiency
- Many causes
- Results in:
 - Inability to stimulate gluconeogenesis during fasting and stress
 - Fasting and stress-induced hypoglycemia
- Presentation
 - Neonates = hypoketotic hypoglycemia
 - Children = ketotic hypoglycemia
- Treatment
 - Replace cortisol
 - Shortened fasting time

Growth Hormone
- Pituitary hormone
 - Growth factor release
 - Long bone growth
- Various additional functions
- Stimulates lipolysis
- Levels ↑ with fasting
 - Lipolysis
 - Ketogenesis

Growth Hormone Deficiency
- Leads to impaired lipolysis and ketogenesis and hypoglycemia
- Presentation
 - Neonates = hypoketotic hypoglycemia
 - Children = ketotic hypoglycemia
- Treatment – replace growth hormone
Case Studies

Case Study 1
- 6 year old male with 2 recent episodes of fasting hypoglycemia

 Episode 1:
 - Normal overnight fast – 12 hours
 - Difficult to arouse in the morning
 - Floppy, crying
 - No illness
 - Parents called 911
 - Glucose in ED was 42mg/dL (2.3mmol/L)
 - Large ketonuria
 - BG rose with juice and child discharged

Case Study 1
- **Episode 2**
 - Slightly longer overnight fast - ~15 hours
 - Very irritable, sleepy, lethargic in the morning
 - Parents tried to give juice and brought to ED
 - Glucose = 55mg/dL (3.05mmol/L)
 - Large Ketonuria
 - CO₂ = 15 mmol/L (18-28)
 - GH = 11 mg/mL (>10)
 - Cortisol = 25 mcg/dL (>18)
 - BG rose with IV dextrose and child discharged and referred to Endocrinology
Case Study 1

- Remembering he is 6, what do you think of his fasting duration? (12-15 hours)
 Short

- What do you think about his:
 - Ketonuria? (Large)
 - GH? (11 mg/mL)
 - Cortisol? (25 mcg/dL)
 Hypoglycemia not from excess insulin or GH/Cortisol deficiency

Case Study 1

- Endocrinology Clinic
 - No previous symptoms of hypoglycemia
 - Growth and development normal
 - FH: No hypoglycemia
 Father with prolonged QT syndrome
 - ROS: Child recently diagnosed with prolonged QT syndrome and started on atenolol
 - PE: Unremarkable

Case Study 1

- Why did he have low glucose levels?
 - Beta blocker = blocked epinephrine = impaired fasting adaptation = ketotic hypoglycemia
- How do we treat him?
 - Shorten fasting time
 - 10 hours when well
 - 5 hours when ill
- How long should he be able to fast at 6 years?
 - 36 hours

- Remembering he is 6, what do you think of his fasting duration? (12-15 hours)
 Short

- What do you think about his:
 - Ketonuria? (Large)
 - GH? (11 mg/mL)
 - Cortisol? (25 mcg/dL)
 Hypoglycemia not from excess insulin or GH/Cortisol deficiency
Case Study 2

- 3 week old male
 - Hyperbilirubinemia
 - Hypoglycemia
- Transferred to NICU from another hospital for evaluation and management of hypoglycemia
- Birth History: 38 weeks, 3047 grams - AGA, maternal PIH, Apgars 61 and 85, hypoglycemia measured shortly after birth

Case Study 2

- Hypoglycemia
 - Persistent since birth - 3 weeks
 - GIR = 10mg/kg/min
 - Lowest glucose = 38mg/dL on DOL 11

- What do you think about his GIR?
 - Too high – normal max is ~6mg/kg/min
 - Indicates organic hypoglycemia disorder

Case Study 2

<table>
<thead>
<tr>
<th>Critical sample</th>
<th>Result</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>37 mg/dL</td>
<td><1</td>
</tr>
<tr>
<td>Insulin</td>
<td><1 uIU/mL</td>
<td><1</td>
</tr>
<tr>
<td>BOHB</td>
<td>0.32 mmol/L</td>
<td>>2.5</td>
</tr>
<tr>
<td>FFA</td>
<td>0.39 mmol/L</td>
<td>>2</td>
</tr>
<tr>
<td>Lactate</td>
<td>1.3 mmol/L</td>
<td>0.5-1.6</td>
</tr>
<tr>
<td>Ammonia</td>
<td>24 umol/L</td>
<td>9-33</td>
</tr>
<tr>
<td>GH</td>
<td>5.96 ng/mL</td>
<td>>10</td>
</tr>
<tr>
<td>Cortisol</td>
<td>0.3 mcg/dL</td>
<td>>15</td>
</tr>
<tr>
<td>ACP</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Urine OA</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Glucagon Stim</td>
<td>< 40</td>
<td>< 25</td>
</tr>
</tbody>
</table>

Thoughts?
Case Study 2

Differential Diagnosis
- Congenital Hyperinsulinism
- Cortisol Deficiency
- GH Deficiency

• What should we do next?

Case Study 2

Pituitary Stimulation Testing

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>GH (ng/mL)</th>
<th>Cortisol (mcg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.01</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>4.44</td>
<td>0.4</td>
</tr>
<tr>
<td>60</td>
<td>5.66</td>
<td>0.4</td>
</tr>
<tr>
<td>180</td>
<td>5.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Free T4 (0.8-11.6 mcg/dL)</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total T4 (5-13 mcg/dL)</td>
<td>3.3</td>
</tr>
<tr>
<td>Total T3 (0.9-2.6 ng/mL)</td>
<td>1.1</td>
</tr>
<tr>
<td>TSH (0.57-19.5 mU/mL)</td>
<td>6.18</td>
</tr>
</tbody>
</table>

Case Study 2

Brain MRI:

Septo Optic Dysplasia:
- Absent septum pellucidum
- Optic nerve hypoplasia
- Ectopic posterior pituitary
- Hypoplastic pituitary stalk
Case Study 2

- **Diagnosis:**
 - Anterior Hypopituitarism
 - TSH
 - ACTH
 - GH

- **Treatment**
 - Thyroxine 44mcg daily
 - Hydrocortisone 12mg/m²/day – tid
 - Growth hormone 0.3mg/kg/week – daily

Case Study 2

- **Outcome**
 - Able to fast 8 hours with BGs all >80mg/dL
 - Discharged to home

Case Study 3

- 3 year old with SOD and Anterior Hypopituitarism
- Treated with thyroxine, hydrocortisone, and growth hormone
Case Study 3

- One night he started vomiting
- Parents gave oral stress hydrocortisone
- Continued with intermittent vomiting for several hours
- He became more lethargic
- Parents called Endocrinology doctor and were told to give him IM Solucortef and come to the ED
- Parents did not give Solucortef but came right to the ED

Case Study 3

- ED
 - Arrived with hypotension and tachycardia
 - Serum glucose 17mg/dL
 - Treated with IV glucose and hydrocortisone
 - Crisis resolved
 - Residual seizure disorder, learning disability, and food aversion that were not previously present

Questions?
That’s All, Folks

Thank you

THE GIRLS HAVE GONE WILD