Islet Cell Allo-Transplantation

Gregory P. Forlenza, MD MCR
Assistant Professor
Barbara Davis Center
University of Colorado Denver

Special thanks to Melena Bellin, MD at The University of Minnesota who provided content for this presentation.

Disclosure

- No direct conflicts of interest regarding islet transplantation.
- Dr. Forlenza is a consultant for Abbott Diabetes Care and conducts research sponsored by Medtronic, Animas, Dexcom, Tandem, Bigfoot, Insulet, and Novo Nordisk.

Objectives

- Define Islet Allo-Transplantation
- Describe specific indications for Islet Allo-Transplantation and recent evidence on outcomes.
- Discuss the limitations to islet Allo-Transplantation and the future directions of research
- Audience Discussion: questions asked by patients and families, how we address them and how we may wish to address them differently
Current T1D Control in the US

• Despite >20 years of knowledge of the importance of tight control, patients are still poorly controlled.
 – Evidence from the Type 1 Diabetes Exchange Registry from 2015.
 – Average A1c by age group is too high at all ages and much too high in adolescents.

Islet Transplantation: Definition

• Transplantation of the pancreatic islets to **treat** or **prevent** diabetes mellitus

• Performed for:
 – Labile type 1 diabetes mellitus ("treat")
 – Prevention of surgical diabetes when pancreas is removed to treat pancreatitis ("prevent")

Islet Transplants for Pancreatic Disease

• Autologous islet transplantation (TP-IAT):
 – Patient’s own islets, for treatment of pancreatitis
 – No risk of rejection
 – No immunosuppression
 – An excellent research model for both forms of islet tx!

• Allogenic islet transplantation:
 – Cadaveric donor islets, for treatment of Type 1 DM
 – Risk of rejection and autoimmunity (from T1D)
 – Requires immunosuppression
 – Performed under a FDA IND (for the islet product) in U.S.

• Xenogenic islet transplantation:
 – Use of non-human (e.g. porcine) islets as a source
 – Essentially pre-clinical only and has more issues than allogenic transplant
Background: TPIAT with Auto Transplantation

• Total Pancreatectomy (TP) is successful for improving pain and quality of life.

• Islet auto-transplantation (IAT) may prevent or minimize diabetes.

Background: Islet Engraftment from Auto Transplantation

• After transplant, islets are at high risk for loss.
 – Hyperglycemia causes islet overstimulation in a post-transplant anoxic environment.

• Animal models have demonstrated that hyperglycemia increases beta-cell apoptosis.\(^{14-19}\)
 – Maintenance of narrow-range euglycemia reduces the islets necessary to prevent post-surgical diabetes.
 – Retrospective cohort analysis from UMN supports these findings in humans.

Auto Transplantation Success

• These results from UMN show that long-term insulin independence can occur in \(\sim 25\%\) of patients.
• Insulin dependence can occur in \(\sim 25\%\) of patients.
• Over 50\% of patients have “minimal insulin use”
Auto Transplantation Success

- Larger cohort from UMN of adults and children.
- Shows that over time the rate of insulin independence rises up to 2 years post transplant.
- Also shows that the rate of partial function falls with time.
 - As does insulin independence after 2 years.

Improved Success with use of AP?

- Better BG control after transplant with use of AP.
- In the CL group AP use allowed for significant islet cell rest and thus a lack of variation based on islet cell yield.
- In the control group, islets were not rested and thus avg BG varied with islet yield.

Differences between Auto and Allo Transplant

- Makes Success Less Likely (auto vs. allo)
 - Auto islets are likely to be damaged from the underlying disease state (chronic pancreatitis).
 - Auto islets are less purified making portal infusion more challenging.
 - Allo islets may come from multiple donor sources to increase their number.
- Makes Success More Likely (auto vs. allo)
 - Auto islets undergo less cold ischemia time.
 - Auto islets are less purified and thus may have more islet stem cell mass.
 - Auto islets don’t require immune suppression and patients don’t have underlying auto immunity.
Indications for Islet Allo-Transplantation

- Islet Allo-Transplantation is still under FDA phase 3 clinical trials.
- FDA Recommended Inclusion Criteria:
 - Established T1D for at least 5 years
 - Severe metabolic instability with multiple episodes of severe hypoglycemia, often with hypoglycemia unawareness.
 - Instability has persisted for at least 6 months with intensive management from a qualified diabetes team.
 - Adults (18+ years old).
- FDA Recommended Exclusion Criteria:
 - Subjects with extremes of BMI
 - Subjects with high baseline insulin requirements (>1 U/kg/day)
 - Subjects with complications of chronic hyperglycemia.
 - HbA1c >12%
 - Conditions which place them at risk from immune suppression.

What does an islet allo transplant involve?

- Detailed pre-transplant evaluation
- Eligible participants listed with UNOS (waitlist time ~1y)
- Hospitalized x 5 days
- Minor surgery: percutaneous or minilaparotomy
- Immunosuppression & infection prophylaxis
 - ATG, tacrolimus, and sirolimus/ MMF
- Insulin weaned off gradually after transplant
- Cost is ~$75,000 just for the islets!

Edmonton Protocol

- Published in 2000 (NEJM), it shifted the focus to glucocorticoid-free immunosuppression.
 - Instituted immunosuppression immediately before transplantation with sirolimus (T-cell inhibitor), low-dose tacrolimus (inhibits T-cell activation), daclizumab (IL-2 inhibitor) and avoidance of glucocorticoids.
- Showed that 100% (7 of 7) of allo-islet transplant patients achieved insulin independence.
- Used multiple (2-4) donors to increase islet mass to >5,000 IEQ/kg.
Edmonton Protocol Follow Up Data

- At 2 years post transplant the overall rate of insulin independence is ~30%.
 - Though more recent data puts the rate at almost 50%.
- Rates of insulin independence continue to decline out to 8 years post-transplant.
 - Most (>70%) of patients are still C-Peptide positive with hypoglycemia protection.

Wider Scale Transplantation

- Clinical trials at multiple sites using the Edmonton protocol has been tested via the Immune Tolerance Network.
- Found that there was significant variation in success between sites.
 - Likely due to site-specific experience with islet preparation and possibly dosing of sirolimus.

- Studies have reported improved success with larger islet masses (>11,000 IEQ/kg) over multiple infusions.
 - This limits the total number of potential recipients.
- Exposure to islets from multiple recipients results in sensitization to more HLA antigens.
 - Argument for single donor over multiple pooled donors.
Success is Improving

- Better successes in each era studied.
- Collaborative Islet Transplant Registry (CITR) data from 1999-2010

Improved Immunosuppressive Protocol

- Corticosteroids are incredibly islet-toxic. Their removal in the Edmonton Protocol revolutionized islet transplantation.
- Sirolimus and tacrolimus have been used instead, though they are also somewhat islet-toxic.
- Mycophenolate mofeti has been shown to be less islet-toxic.

Improved Immunosuppressive Protocol

- Bellin, et al. showed the benefit of alternative immunosuppression in single donor allo transplants:
 - Induction with antithymocyte globulin (ATG) plus etanercept (TNF-alpha blocker).
 - Maintenance with cyclosporine and everolimus or mycophenolate mofeti.
 - Found that 5 of 6 recipients with T1D were insulin-independent at 1 year post transplant and 4 were insulin independent at >3 years post-transplant.
- The addition of exenatide and etanercept to the Edmonton protocol has also improved outcomes.
New Immunosuppressive Agents

- Abatacept and belatacept (block T-cell interaction with CD80/CD86) have shown early promise to improve single donor outcomes when combined with ATG.

Future Research: Site Selection

- Islets are traditionally infused into the portal vein to engraft in liver sinusoids.
- Benefits of this site include
 - relative ease of access,
 - good oxygenation and blood flow,
 - physiologic sensing and insulin diffusion environment.
- Drawbacks include
 - instant blood mediated inflammatory reaction after transplant with cell loss,
 - high concentration of immunosuppressive agents due to first pass metabolism,
 - loss of counter regulation compared alternative sites,
 - difficulty in obtaining tissue to assess rejection

- Placement in the an omental pouch shows promise in animal models to provide a rich blood supply with limited IBMIR.
- Other commonly proposed sites include skeletal muscle and the kidney capsule.
Islet Encapsulation

- The concept of providing a secure oxygen and nutrient-rich environment for islets while affording a degree of immune isolation.
 - Idea dates back to 1977.
- This concept is gaining widespread public awareness.
- Patients often ask about this at clinic visits and occasionally during our "new onset" talks.

Macroencapsulation

- Macrocapsules contain a large number of islets within the device.
 - Device may be intravascular or extravascular.
 - Intravascular devices associated with clotting and embolization.
- Most popular design has been a planar device with two composite membranes and a loading port.

Macroencapsulation

- Original planar device the TheraCyte Implant showed promise in the late 1990’s and early 2000’s in pig and monkey models.
 - Original Patent has lapsed.
- New focus on use of a planar macroencapsulation device for use with human embryonic stem cell-derived islets.
 - The macroencapsulation protects the body against possible teratomas formed from the stem cells.
 - Device is also easily retrievable.
Macroencapsulation

- ViaCyte is a commercialization effort of embryonic stem cells and planar macroencapsulation technology.
 - It has received a lot of coverage in the non-medical literature and is a frequent source of questions for me from families.
- Mouse model study of success of function of human embryonic stem cells in macroencapsulation device.

- Pre-clinical trial results showed success reversing hyperglycemia in small animal models.
- ViaCyte has begun Phase 1 clinical trials as of August 2014.
 - https://clinicaltrials.gov/ct2/show/NCT02239354
 - Current sites are UC San Diego and University of Alberta.
 - Enrolling patients 18-55 years old with T1D for 3+ years
 - Single arm, open label, non-randomized trial with an estimated enrollment of 40 patients and an outcome assessment of August 2017.

Other Encapsulation Trials
Islet Transplantation: What is Success?

- Traditionally defined as insulin independence.
 - Major current indication for experimental allotransplant, however, is hypoglycemia unawareness.
 - Should improvement in severe hypoglycemic events be the measure?

- Many patients achieve what I call chronic honeymoon state whereby they require some small amounts of insulin but control is better (and easier) than prior to transplant.
 - Should presence of C-peptide be the measure?

Islet Transplantation: Discussion

- What questions do your patients ask?
- How do you respond?
 - How may you respond differently after the information discussed today?
- How do you balance providing hope with tempering expectations?
- How broadly would you define “cure?”
- How would you discuss the risks and benefits of islet transplantation?
- At what cost point would you say it would be widely accessible?